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LETTER TO THE EDITOR 

Invariants for a cubic three-wave system 

L Cair6, D D Hua and M R Feix 
MAF'WCNRS-Univenite d'0rlbns. 45071 Orleans, Cedex 2, Fmce 

Received 18 May 1994 

Abstract Lnvariantr of the motion (in general time-dependent first inteprals) for a cubic three- 
wave system are obtained using the generalized Carleman method. It is shown that a subset of 
these invariants are of Laika-Volterra type. 

Recently there has been much research on partial integrability of three-dimensional 
dynamical systems by searching for their invariants of the motion (first integrals), from 
predictive methods such as the singularity analyses [1,2] and from direct methods such as 
the Carleman methods [3,4], and others [5-101. However, despite all the successes of these 
methods most of the systems so far studied have been quadratic. Hence here we use a 
generalization of the Carleman method, introduced previously [4], to search invariants for 
the modes of a three-wave interaction system [ll, 121, which is a three-dimensional cubic 
system. There are two purposes €or doing so; one is the physical interest in the regular (non- 
chaotic) motion of three-interacting waves which has applications in the theory of optical 
maser [13] and in the study of gravity-wave interactions [14]. The other is to find explicit 
conditions for the existence of invariants which would serve as a guide for future extension 
of the Painlev.6, singularity analyses and other methods. Indeed, the Carleman method 
with the assistance of computer algebra facilities is still the most general and successful 
method in finding quasi-polynomial invariants, which are the only known type for all three- 
dimensional systems [3,4]. For example, Kuh [3], using the Carleman method found all six 
known Lorenz invariants and the conditions for their existence. The application of Painlev6 
analysis to this system came only later with the work of Levine and Tabor [I51 who, using 
an appropriate singularity analysis, suggest that no other invariants may exist for the Lorenz 
system. Furthermore there exist partially integrable systems that do not satisfy the Painlev6 
property [15,161. The system under consideration is the so-called diagonalized system, 
where the linear terms appear in a diagonalized form and the cubic terms in a 'factorized 
form' [6]. The system is defined as 

(here i goes from 1-3). Note that the particular case Ntj = 0 and hi = 0 Vi, j is the well 
known Euler system, the solution of which can be exhibited in terms of elliptic functions. 
See, for example, Landau and Lifchitz [17]. Also note that when yi = 0 Vi, the system 
becomes Lo&-Volterra (LVS) as it can be seen that the transformation X, = x;,  changes 
(1) into 
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where &. = 2& and xj = 2 N j j .  

the quasi-polynomial invariant: 
We recall that the generalized Carleman method 141 consists of the following ansatz for 

L.M,N 

(2) I m n SI I = x ~ ' x ? x ?  A~,,X,+ x3 e 
I.m,n=O 

where 1 ,  m, n are integers and al, a? and a3 are real numbers. We will limit our 
investigations to the cases where 1 + m + n < P with P = 2 i.e. L,  M ,  and N < 2. 
We have, altogether, 10 coefficients and three arbitrary parameters a, B. y .  We write 
the invariance of (2) 

d i  ai a i  , ai , a t  
dt at axl ax2 ax, 
_ = -  - + - X I  + -x2 + -x3 = 0 

where we iniroduce the expressions for i l ,  i z ,  x'3 given by (1). The partial derivative with 
respect to the time of the term A I ~ ~ x ~ + ' x ? ~ ~ x ~ + "  brings the same term multiplied by s. 
The derivative with respect X I  brings (a + l)Al,,xp"-'x,B+'x:+"xI, i.e. omiting xpx[x,', 
we get terms in the following monomials: 

x:+x;+Z m t l  n t l  
x :xFx;  I x 2 x 3  x : x y x ;  I x2 x3 ' 

x i i Z  m n 

We use Maple to compute, gather terms of identical power in lmn and solve the equations 
resulting from setting all the coefficients equal to zero (see 141 for further details of the 
method). The equations are h e a r  in the coefficients Almn and can be written in the form 

mtjK = z [ i j k l m n ] A i , , ,  = 0 
i m n  

where the i j k  and lmn refers, respectively, to the columns and lines of the matrix appearing 
in table 1 (the so-called Carleman matrix). Each [ i j k l m n ]  is one of the seven multiplying 
operators acting on AI,,, (denoted by 0,1,2,3,4,5,6) given by 

0 = ( I  + a ) h l  + (m + B)hz + (n + y)h3 + s 
1 = ( I  + ~ ) N I I  + (m + B ) N z I  + ( n  + y)N31  

2 = ( I  + ~ N I Z  + (m + B ) k  + (n + Y)N32 
3 = (1 + fffNI3 + (m + B)Nu + (n + y)N33 

4 = (n + y ) n  5 = (m + Ply2 6 = ( I  + a ) y ~ .  

Many of the equations are consequently redundant and we end up with a reasonable 
The invariant conditions and the amount of constraints on the coefficients of (1). 

corresponding invariants found are the following. 

(i) yi = 0 Vi and detNi, = 0 
I = xp' xf x y  e"' (3) 

where s = -aihi and ais are solutions to aiNjj = 0 (f" here on the Einstein 
summation rule on repeated indexes is used). This is the invariant I in [4]. 

(ii) yi = 0, hi = A Vi and RI23 E d l ~ d s d 3 1  + d21d32d13 = 0 where dij = Nij - N,j V i ,  j :  

where the ais are the solutions of the system aiNij = -Nlj (i, j = I ,  . . . , 3). This is 
the invariant Il in [4]. 
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Table 1. Carleman matrix. 

WO -111 w1 010 1-11 1w 11-1 -112 -121 w2 011 020 1-12 101 110 12-1 2-11 250 21-1 

O O O O  6 5 4 3 2 1 
001 0 6 5 4 
010 0 6 5 4  
100 0 6 5 4 
002 0 
01 1 0 
020 0 
101 0 
110 0 
200 0 

00 1 3 2 1 
010 3 2 1 
100 3 2 1 
002 6 5 4 
01 1 6 5 4 
020 6 5 4 
101 6 5 4 
110 6 5 4  
200 6 5 4 

002 3 2 1 
01 1 3 2 1 
020 3 2 1 
101 3 2 1 
110 3 2 1 
200 3 2  1 

-113 -122 -131 CO3 012 021 030 1-13 102 111 120 13-1 2-12 201 210 22-1 3-11 3W 31-1 

004 013 022 031 040 103 112 I21 130 202 211 220 301 310 4CQ 

(i i i)  yi = 0 V i ,  11 = A3 = A and N32 = N12: 

where ais are once again solutions to ai Nij = -Nji  and s = -21 (1 + a1 + a3)-2&2. 
This is invariant U’ in [4]. Note that we obtain two more invariants of this form by 
exchanging the indices (1 -+ 2, 2 3 1) and (3 3 2, 2 -+ 3). 

(iv) yi = 0 and Rij = (NjJAi) (Nij - N j j )  + ( N j j / A j )  ( N j j  - N j j )  = 0 Vi,  j :  
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(vi) y2 = n = 0 and N l i  = N z  + N3i V i :  

with 012 = (N32 - N12 - Nn)N31/(NzzN31 - N ~ z N z I ) ,  013 = (N12N21 - N I I N Z Z ) /  

Note that a similar invariant to (9) exists changing indexes (2 + 3 and 3 -+ 2) in the 
preceding formulation. 

(viii) n = n = 0, NIZNZI  = N I I N U ,  N32Nu = NZZN33, N13N31 = N33NI1, Nzl = 

(NUN31 - N32N21). S = -h201z - h3(1 + 013). 

N I I  - N31 and Nzs = N13 - N33: 

Equation (11) coincides with (4), the LVS invariant II. 
(x) y3 = 0. hi = A Vi ,  NI3 = N33. N u  = N33, N31 = N I I ,  N32 = NU, and d21 yl = d ~ z n :  

I = x ;  XI - - x 2  
2 (  2 2 ,  

This invariant is similar to (4). In fact the same conditions in hi are shared and the 
conditions on Nij  here imply that R I B  = 0. 

d21 YI  = ~ I Z Y Z :  
(xi) n = 0, N z z ~ ~ ~ A ~  + N I I ~ I Z A Z  = 0, NU = N33. Nu = N33, N3I = N I 1 ,  N32 = N22 and 

which coincides with (6) taking the above conditions into account. 

~ Z I Y I  =dizyz: 
(xii) n = 0, hl = Az, A3 = WZ, NZ = N13, N3I = ~ N I I ,  N32 = ~ N z z ,  N33 = 2N13 and 

I = x;' ( x ;  - gx;) 
(xiii) M = 0, AI = A2 = h, A3 = N11 = NU = N13 = N u  = 0, and N21yi = N 1 2 ~ :  

I = ( XI 2 --xz ;; 2) e-ul 
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Invariants (v)-(viii) are for y1 # 0, and it is obvious that there exist two more 
corresponding sets of invariants and conditions by considering (yl = yz = 0) and ( y l  = 
y3 = 01, and by changing the indices appropriately in the subsequent results. The fist two 
of these were found by Goriely 161 using pseudo-monomial transformations. Invariants (ix)- 
(xiii) are similar to LVS ones but requiring more conditions among the system parameters. 
Two more invariants of the type (16) exist by the rotation (1 --f 2,2 --f 3,3 --f 1) of the 
indexes both in the invariant conditions and in the invariant. We note that L, M. N = 1 does 
not give any invariant in contradistinction with the LVS case. We also see that the fact of 
breaking the L v s  structure, which results in considering the,quadratic terms in (I), leads to 
an increase on the invariant conditions. In the course of calculations we encountered many 
trivial invariants which we choose not to present. The trivial invariants originate when the 
system (I), degenerates into one or two uncoupled equations. We also note the existence 
of invariants of LVS type (in this last case all three yi = 0) even though the system (1) does 
not adopt the form of a LVS system as two of the y is  are not zero. To explain this fact 
we already noticed that the L v s  invariant conditions were satisfied. Moreover, although the 
systems look different, their equilibrium points coincide. One can in fact see immediately 
that this is true in the plane q = 0 for (11) or (12) and in the coordinate axis for (13). 
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